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An Iterative Procedure for the Calculation of the Lowest 
Real Eigenvalue and Eigenvector of a 

Nonsymmetric Matrix 

A new and promising method for the calculation of electronic wavefunctions 
of atoms and molecules [I] involves in some of its steps the calculation of the 
lowest eigenvalue and corresponding eigenvector of an almost-symmetric matrix. 
Although a few, very efficient, procedures are available for the general non- 
symmetric eigenvalue problem [2, 31, there have been no effective methods which 
are specifically tailored for the calculation of the lowest root only, particularly 
for the case in which the matrix has a strongly dominant main diagonal and in 
which a reasonable initial guess can be provided for the left- and right-eigenvectors. 

A very effective solution for the symmetric analogue of this problem by an 
iterative technique has been given by Nesbet [4], and the aim of the present note 
is to show that this technique can be extended to the nonsymmetric case. A modifi- 
cation of Nesbet’s algorithm, devised by one of the present authors [5] in order 
to facilitate efficient application to very large and/or sparse matrices, can also be 
extended to the nonsymmetric case. As in Nesbet’s original method, the compu- 
tational effort is roughly proportional to the square of the dimension of the 
matrix; in the modified form for sparse matrices the effort is approximately 
proportional to the number of non-zero matrix elements only. 

As in the original procedure, the algorithm will be developed for the generalized 
eigenvalue problem, 

Hc = ESc, (1) 

where H is the given real non-symmetric matrix, S is a given metric (“overlap 
matrix”) which is real and positive definite (in most cases S is just the unit matrix), 
E is the desired real eigenvalue, and c is the corresponding right-eigenvector. 
The left-eigenvector b belonging to E satisfies the equation 

bTH = EbTS, (2) 

where the superscript T denotes the transpose. (The eigenvalue E is real if H is 
not very “far” from symmetric and if the eigenvalue of $(H + HT) which is closest 
to E is nondegenerate and well separated; for if E is complex, then E* would 
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also be an eigenvalue of H, and this pair of complex eigenvalues would coalesce 
to a degenerate eigenvalue of #-I + HT) in the limit as H - NT--t 0.) 

Given some estimates c and b for the right- and left-eigenvectors, respectively, 
a corresponding estimate for the eigenvalue (analogous to Eq. (2-4) of [5]) would 
be obtained from 

E = bTHc/(bTSc). (3) 

If the errors in b and c are of order E, then the error in E would be of order 3, 
since terms such as rTHc and bTHE reduce to EeTSc and EbTSE, respectively, 
when b and c are the appropriate exact eigenvectors. Proceeding as in Ref. [5], 
Eq. (59), the pCG-th elements of b and c are modified according to the sequence of 
steps: 

(4) 

(5) 

(6) 

a, = i b,H,, - Ef,’ , 
A-l 

4. = d@&, - fLh 

4, = u,'IWs,, - HA 

AD = W,Jfu + f,‘&J + (4) 4d~), 
AE = (Ab,) U&D + AD) = u,‘(Ac,,)/(D + AD), 

(7) 

(8) 

(9) 

(10) 

(11) 

with b, , c, , D, and E being adjusted by the appropriate increments at the end 
of this process. Keeping one component of b and c fixed (this would preferably be 
the dominant component-see the discussion of convergence in Ref. [5]), all other 
components are adjusted repeatedly in any sequence, until all the Ab, and AC, for 
a complete cycle over ~1 are smaller in magnitude than a specified criterion C. 
At this time the iterations are complete and the error in E is of order C2. 

A Fortran program for this procedure in the special case of S = 1 is available 
upon request from the authors. 

If the matrix is too large to fit into the central store of the computer as an 
ordinary two-dimensional array, or if advantage is to be taken of considerable 
sparsity in H (and S), then a procedure similar to that presented in [5] for large 
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and/or sparse matrices can be applied. The detailed procedure would then consist 
of the following sequence of steps (the reverse arrow c denotes replacement): 

I. Initialization 

1. Obtain an initial approximation for b and c (e.g., b, = c, = 1 for the 
dominant component and b, = c, = 0 for all p f v). 

2. Set t = u = 0 (two n-dimensional vectors). 
3. For p = 1, 2 ,..., n, in turn: 

(a) Obtain row ~1 (S,, and HUA for X = 1, 2 ,..., n). 
(b) For each h = 1,2,..., n set t,, +- t, + b,S,, and u,, t u,, + b,H,, . 

4. Compute D = C,, tpc, , N = C, u,c, , E = N/D. 

II. Iteration 

1. Set dcmax = 0. 
2. For each p = 1, 2 ,..., n, except p = v (the fixed component): 

(a) Obtain row p. 
(b) Computef, = C,“=, S,,,c,, and g, = C,“=, Hug, . 
(c) Compute a, = g, - Efu and a,,’ = u, - Et, . 
(d) Compute AC, = u,/(ES,, - H,,) and Ab, = u,‘/(ES,, - H,,). 
(e) Set D c D + Ab,f, + t, Ac, + Ab,S,, Ac, . 
(f) Set E c E + a,’ AcJD. 
(g) Set c, c c, + AC,, b, cb, + Ab, , and 

ACIW +- max(Acmax, I AC,, I, I Ab, I). 
(h) For each h = 1, 2,..., n, set tA t t,, + Ab,S,,, and Us t u,, + Ab,H,,A . 

3. If Acmax > C (at the end of a complete iteration), repeat from Step 11.1. 

If the word length of the computer is rather short and there is danger of excessive 
accumulation of round-off errors in the continuous updating of t and u in 
Step 11.2(h), then new sums as in Step 1.3(b) should be accumulated during each 
iteration, separately from the current updating in Step 11.2(h), and substituted 
for the latter updated values at the end of each complete iteration. Similarly, 
round-off error accumulation in the continuous updating of D and E can be reduced 
by recalculating these quantities at the end of each iteration (or only after the last 
iteration) as in Step 1.4. For the case of S = 1 all the steps involving S would be 
omitted, replacing f, , t, , and S,, by c, , b, and 1, respectively. 

The handling of sparse matrices is analogous to the case of symmetric matrices 
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discussed in [5]. The convergence properties are also similar to those in the 
symmetric case, and depend upon the dominance of the main diagonal of H - ES 
and upon the eigenvalue E (and its approximations throughout the iterations) 
being well-separated from the values of H,,/S,, for all p f Y (where c, and b, are 
the hxed components of c and b, respectively). It has also been found in many 
test calculations that for almost-symmetric matrices the right-eigenvector approxi- 
mation c can be used for b as well throughout the iterations without serious 
effect on convergence qualities; in numerous calculations with II = 10 to n = 100, 
convergence was generally obtained in fewer than 10 iterations even with this 
further approximation. 
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